Comparison of Lattice Boltzmann simulation of droplet evaporation and experiments

Gianluca Laghezza3, Erik Dietrich1,2, Stefan Kooij1, Harold J. W. Zandvliet1, Rodrigo Ledesma-Aguilar4, Detlef Lohse2, Julia Yeomans3, and Dominic Vella5

1Physics of Interfaces and Nanomaterials,
2Physics of Fluids, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands,
3The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK,
4Department of Physics and Electrical Engineering, University of Northumbria Newcastle, and 5Mathematical Institute University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road Oxford OX2 6GG

Abstract

By using a lattice Boltzmann method for simulating droplet evaporation (R. Ledesma-Aguilar et al., Soft Matter, 2014, 10, 8267) we investigate the evaporation of single and multiple droplets. The numerical results show a good agreement with experiments of the evaporation of alcohol droplets in water with regards to the typical timescales and the convection fields. We also show the slow-down in the evaporation timescales when considering geometries consisting of a larger number of droplets. We discuss how to choose the correct boundary conditions in simulations to correctly reproduce experimental setups.